15,038 research outputs found

    Analysis of selective chopper radiometer data

    Get PDF
    Data from SCR-B on Nimbus 5 have been processed to yield global, orbital temperatures at 10, 5, 2, 1, and 0.4 mb for the period January 1977 through April 1978 under the current task. In addition gridded values at 10 deg latitude by 20 deg longitude were prepared by space-time interpolation for the period January 1975 through April 1978. Temperature retrieval was based on regression of radiances against Meteorological Rocket Network data, with regressions recomputed at approximately six-month intervals. This data now completes a consistent time series from April 1970 to April 1978 for all available radiance data from SCR A and SCR B on Nimbus 4 and 5. The processing details for the current period are discussed, but is also applicable to the previous data periods. The accuracy of the temperature retrievals for each 6-month period for the entire eight years is given in the Appendices

    Fluidic hydrogen detector production prototype development

    Get PDF
    A hydrogen gas sensor that can replace catalytic combustion sensors used to detect leaks in the liquid hydrogen transfer systems at Kennedy Space Center was developed. A fluidic sensor concept, based on the principle that the frequency of a fluidic oscillator is proportional to the square root of the molecular weight of its operating fluid, was utilized. To minimize sensitivity to pressure and temperature fluctuations, and to make the sensor specific for hydrogen, two oscillators are used. One oscillator operates on sample gas containing hydrogen, while the other operates on sample gas with the hydrogen converted to steam. The conversion is accomplished with a small catalytic converter. The frequency difference is taken, and the hydrogen concentration computed with a simple digital processing circuit. The output from the sensor is an analog signal proportional to hydrogen content. The sensor is shown to be accurate and insensitive to severe environmental disturbances. It is also specific for hydrogen, even with large helium concentrations in the sample gas

    Tentative Detection of the Rotation of Eris

    Get PDF
    We report a multi-week sequence of B-band photometric measurements of the dwarf planet Eris using the {\it Swift} satellite. The use of an observatory in low-Earth orbit provides better temporal sampling than is available with a ground-based telescope. We find no compelling evidence for an unusually slow rotation period of multiple days, as has been suggested previously. A \sim1.08 day rotation period is marginally detected at a modest level of statistical confidence (\sim97%). Analysis of the combination of the SwiftSwift data with the ground-based B-band measurements of \citet{2007AJ....133...26R} returns the same period (\sim1.08 day) at a slightly higher statistical confidence (\sim99%).Comment: Accepted to Icarus 2008-Aug-19. 19 pages total, including 4 figures and 1 tabl

    Effect of weathering product assemblages on Pb bioaccessibility in mine waste: implications for risk management

    Get PDF
    General assessments of orebody types and associated mine wastes with regards to their environmental signature and human health hazards are needed to help managing present and historical mine waste facilities. Bioaccessibility tests and mineralogical analysis were carried out on mine waste from a systematic sampling of mine sites from the Central Wales orefield, UK. The bioaccessible Pb widely ranged from 270 to 20300 mg/kg (mean 7250 mg/kg; median 4890 mg/kg) and the bioaccessible fraction from 4.53 % to >100 % (mean 33.2 %; median 32.2 %), with significant (p=0.001) differences among the mine sites. This implies sensitivity of bioaccessibility to site-specific conditions and suggests caution in the use of models to assess human health impacts generalised on the basis of the mineral deposit type. Mineralogical similarities of the oxidation products of primary galena provided a better control over the observed Pb bioaccessibility range. The higher Pb bioaccessibility (%) was related to samples containing cerussite, irrespective of the presence of other Pb minerals in the mineral assemblage; lower Pb bioaccessibility resulted where anglesite was the main Pb mineral phase and cerussite was absent. A solubility diagram for the various Pb minerals in the waste was derived using PHREEQC model and the experimental Pb concentration measured in the simulated gastric solution compared with the equilibrium modelling results. For samples containing cerussite, the model well predicted the soluble Pb concentrations measured in the experimental simulated gastric solution, indicative of the carbonate mineral phase control on the Pb in solution for these samples and little kinetic control on the dissolution of cerussite. On the contrary, most mine waste samples containing dominant anglesite and or plumbojarosite (no cerussite) had lower solution Pb values, falling at or below the anglesite and plumbojarosite solubility equilibrium concentrations, implying kinetic or textural factors hindering the dissolution

    RESONANT ACOUSTIC WAVE ASSISTED SPIN-TRANSFER-TORQUE SWITCHING OF NANOMAGNETS

    Get PDF
    We studied the possibility of achieving an order of magnitude reduction in the energy dissipation needed to write bits in perpendicular magnetic tunnel junctions (p-MTJs) by simulating the magnetization dynamics under a combination of resonant surface acoustic waves (r-SAW) and spin-transfer-torque (STT). The magnetization dynamics were simulated using the Landau-Lifshitz-Gilbert equation under macrospin assumption with the inclusion of thermal noise. We studied such r-SAW assisted STT switching of nanomagnets for both in-plane elliptical and circular perpendicular magnetic anisotropy (PMA) nanomagnets and show that while thermal noise affects switching probability in in-plane nanomagnets, the PMA nanomagnets are relatively robust to the effect of thermal noise. In PMA nanomagnets, the resonant magnetization dynamics builds over few 10s of cycles of SAW application that drives the magnetization to precess in a cone with a deflection of ~45⁰ from the perpendicular direction. This reduces the STT current density required to switch the magnetization direction without increasing the STT application time or degrading the switching probability in the presence of room temperature thermal noise. This could lead to a pathway to achieve energy efficient switching of spin-transfer-torque random access memory (STT-RAM) based on p-MTJs whose lateral dimensions can be scaled aggressively despite using materials with low magnetostriction by employing resonant excitation to drive the magnetization away from the easy axis before applying spin torque to achieve a complete reversal

    Author addresses reasons behind rising college costs

    Get PDF

    Vortex information display system program description manual

    Get PDF
    A vortex information display system is described which provides flexible control through system-user interaction for collecting wing-tip-trailing vortex data, processing this data in real time, displaying the processed data, storing raw data on magnetic tape, and post processing raw data. The data is received from two asynchronous laser Doppler velocimeters (LDV's) and includes position, velocity, and intensity information. The raw data is written onto magnetic tape for permanent storage and is also processed in real time to locate vortices and plot their positions as a function of time. The interactive capability enables the user to make real time adjustments in processing data and provides a better definition of vortex behavior. Displaying the vortex information in real time produces a feedback capability to the LDV system operator allowing adjustments to be made in the collection of raw data. Both raw data and processing can be continually upgraded during flyby testing to improve vortex behavior studies. The post-analysis capability permits the analyst to perform in-depth studies of test data and to modify vortex behavior models to improve transport predictions

    Macro-micro feedback links of water management in South Africa : CGE analyses of selected policy regimes

    Get PDF
    The pressure on an already stressed water situation in South Africa is predicted to increase significantly under climate change, plans for large industrial expansion, observed rapid urbanization, and government programs to provide access to water to millions of previously excluded people. The present study employed a general equilibrium approach to examine the economy-wide impacts of selected macro and water related policy reforms on water use and allocation, rural livelihoods, and the economy at large. The analyses reveal that implicit crop-level water quotas reduce the amount of irrigated land allocated to higher-value horticultural crops and create higher shadow rents for production of lower-value, water-intensive field crops, such as sugarcane and fodder. Accordingly, liberalizing local water allocation in irrigation agriculture is found to work in favor of higher-value crops, and expand agricultural production and exports and farm employment. Allowing for water trade between irrigation and non-agricultural uses fueled by higher competition for water from industrial expansion and urbanization leads to greater water shadow prices for irrigation water with reduced income and employment benefits to rural households and higher gains for non-agricultural households. The analyses show difficult tradeoffs between general economic gains and higher water prices, making irrigation subsidies difficult to justify.Water Supply and Sanitation Governance and Institutions,Town Water Supply and Sanitation,Water Supply and Systems,Water and Industry,Water Conservation

    Internal debt management in Africa

    Get PDF

    C/EBPalpha: critical at the origin of leukemic transformation

    Get PDF
    Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by clonal expansion of myeloid progenitor cells. A major mechanistic theme in AML biology is the extensive collaboration among fusion oncoproteins, transcription factors, and chromatin regulators to initiate and sustain a transformed cellular state. A new study in this issue describes how the C/EBPalpha transcription factor is crucial for the initiation of AML induced by MLL fusion oncoproteins, but is entirely dispensable for the maintenance of established disease. These observations provide a unique glimpse into the pioneer round of regulatory events that are critical at the origin of AML formation. Furthermore, this study implies the existence of oncogene-induced positive feedback loops capable of bypassing the continuous need for certain regulators to propagate disease
    corecore